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<+ Deep Neural Networks are Easily Fooled: High Confidence Predictions for
Unrecognizable Images

« 20159 CVPR(Computer Vision and Pattern Recognition)0j|A HHEE =F
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Deep Neural Networks are Easily Fooled:
High Confidence Predictions for Unrecognizable Images

Anh Nguyen Jason Yosinski Jeff Clune
University of Wyoming Cornell University University of Wyoming
anguyen8@uwyo.edu yosinski@cs.cornell .edu jeffclune@uwyo.edu

Abstract

Deep neural networks (DNNs) have recently been
achieving state-of-the-art performance on a variety of
pattern-recognition tasks, most notably visual classification
problems. Given that DNNs are now able to classify objects
in images with near-human-level performance, questions
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Towards Open Set Deep Networks

Abhijit Bendale*, Terrance E. Boult
University of Colorado at Colorado Springs

{aber_dale, tbou'_t}@vast .uccs.edu *

Abstract

Deep networks have produced significant gains for var-
tous visual recognition problems, leading to high impact
academic and commercial applications.
deep networks highlighted that it is easy to generate images
that humans would never classify as a particular object
class, yet networks classify such images high confidence
as that given class — deep network are easily fooled with
images humans do not consider meaningful. The closed set
nature of deep networks forces them to choose from one of
the known classes leading to such artifacts. Recognition in

Recent work in

vision and learning. Recent research in deep networks has
significantly improved many aspects of visual recognition
[26, ]. Co-evolution of rich representations, scalable
classification methods and large datasets have resulted in
many commercial applications [5, 25, 16, 6]. However, a
wide range of operational challenges occur while deploying
recognition systems in the dynamic and ever-changing real
world. A vast majority of recognition systems are designed
for a static closed world, where the primary assumption is
that all categories are known a priori. Deep networks, like
many classic machine learning tools, are designed to per-
form closed set recognition.
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distribution function, then the limit distribution F' belongs to either the
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» Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford: Oxford University Press.
« de Haan, Laurens; Ferreira, Ana (2006). Extreme Value Theory: An Introduction. New York: Springer. pp. 6-12. ISBN 0-387-34471-3.
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Let X1,X5...,X,, ... be a sequence of independent and identically-
distributed random variables, and M,, = max{Xj,...,X,}.Ifa

sequence of pairs of real numbers (a,,by) exists such that each a,, > 0

[221.134,217.532, - ,197.423]

M, —b
and lim P (u < m) = F(x), where F' is a non-degenerate
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distribution function, then the limit distribution F' belongs to either the
Gumbel, the Fréchet or the Weibull family/4!. These can be grouped into
the generalized extreme value distribution.

SYEELONM SEHOZ —’F—%ij HO| ME S I 2 :
» U= HOM O Z AEL 2 2E2 Weibull 21X, 0 ’ - 4
Frechet 2 Gumbel 22| HEfZ TS 2~ QIC}. 1
mmm) —ICH7O| X O|AMX|Q| B £ 2 2 n(=20)7H SampleE £[CH 7tk =S S

TEo| ot=t0[ElE 7.

» Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford: Oxford University Press.
« de Haan, Laurens; Ferreira, Ana (2006). Extreme Value Theory: An Introduction. New York: Springer. pp. 6-12. ISBN 0-387-34471-3.
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=5.20-(0.01 x 5.20) =5.148
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